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Learning-Based Position and
Orientation Control of a Hybrid
Rigid-Soft Arm Manipulator
We present a position and orientation controller for a hybrid rigid-soft manipulator arm
where the soft arm is extruded from a two degrees-of-freedom rigid link. Our approach
involves learning the dynamics of the hybrid arm operating at 4Hz and leveraging it to gen-
erate optimal trajectories that serve as expert data to learn a control policy. We performed
an extensive evaluation of the policy on a physical hybrid arm capable of jointly controlling
rigid and soft actuation. We show that with a single policy, the arm is capable of reaching
arbitrary poses in the workspace with 3.73 cm (<6% overall arm length) and 17.78 deg
error within 12.5 s, operating at different control frequencies, and controlling the end effec-
tor with different loads. Our results showcase significant improvements in control speed
while effectively controlling both the position and orientation of the end effector compared
to previous quasistatic controllers for hybrid arms. [DOI: 10.1115/1.4067872]
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1 Introduction
Robotic manipulation requires high dexterity, adaptability,

and safe handling of objects to enable intricate manipulations in
agroforestry, telehealth, and other applications in constrained set-
tings [2,3]. Soft continuum arms (SCAs) are inspired by octopus
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tentacles and elephant trunks and do not have rigid joints and actu-
ators [4–8]. These manipulators are predisposed to work well in
such cases due to their adaptability [9–12], but they do not lend
to precise operations, especially with large payloads. Moreover,
the workspace and steerability of these manipulators are strongly
affected by gravity [13–16]. Also, controlling both end effector
position and orientation is difficult, given the larger workspace
and the under-actuated nature of soft manipulators [17].
On the other hand, hybrid rigid-soft manipulators can be used

as a conventional rigid arm when precision and load bearing are
deemed important, while a distal deployable soft arm can bring in
additional dexterity and adaptability. One such platform is the var-
iable length nested soft (VaLeNS) [18] configuration, where an
SCA is stored in a hollow robotic link with the ability to extrude
out of the link as needed. In the VaLeNS configuration, the rigid
link positions itself appropriately for the soft arm to extrude and
reach the target position with the required end orientation. Its effec-
tiveness has been demonstrated in agricultural berry harvesting
[1,2] and healthcare applications [19] where the soft arm is con-
trolled in a quasistatic manner. While soft arms provide various
advantages, a hybrid system offers a broader design space albeit
at the cost of increased system complexity. Thus, for practical real-
world applications, a fast position and orientation controller must be
developed. For instance, in the harvesting scenario, without orien-
tation control, reaching the fruit position does not guarantee that
the gripper is facing the fruit. Additionally, if not done in a
timely manner, the economic viability of the system degrades.
However, due to the rotating base of the hybrid arm, the soft arm
is no longer stationary compared to the vertically downward sus-
pended soft arms [20–22]. When coupled with the varying length
of the arm and the effects of gravity, more complex shapes and tra-
jectories can be explored that are otherwise unattainable with a
purely soft system. Thus, controlling a hybrid rigid-soft manipulator
presents more challenges than controlling a purely soft manipulator.
Therefore, we (i) develop a control policy where there is no

waiting for the arm to settle unlike in quasistatic controllers;
(ii) control our hybrid manipulator in the VaLeNS configuration,
which is challenging due to its dexterity and increased range of
motion; (iii) control not only the position but also the orientation
of the end effector, which is a more difficult learning problem but
has more practical applications in any downstream task that requires
grasping; (iv) accommodate zero-velocity of the end effector to
support downstream manipulation tasks, unlike works like Ref. [20]
that have dynamic reaching, and (v) extensively evaluate our phys-
ical platform.

2 Related Work
For hybrid arms, a leading approach is to use quasistatic control-

lers. Dynamic effects are present when operating pneumatic actua-
tors at high speeds. Thus, quasistatic controllers often actuate at low

speeds to dissipate these dynamic effects of the system. In this
regime, numerical methods like piece-wise constant curvature and
Cosserat rod theory can be used to model and control the dynamics
of a soft arm [23–25]. Shi et al. [25] use a Cosserat rod model to
control the position and orientation in a quasistatic manner. Using
these analytical models or a learned model, Gan et al. [21],
Satheeshbabu et al. [13,26], Centurelli et al. [22], Wu et al. [27],
and Uppalapati et al. [1] learn control policies using a variety of
reinforcement learning (RL) methods.
The alternative is dynamic controllers, designed to dampen oscil-

lations, and consider inertial effects and other dynamic effects,
which can be incorporated either explicitly or learned through
dynamic data collection, to improve control at higher frequencies.
In many fields, dynamic controllers have high operating frequen-
cies. However, in Ref. [28], Jacobian-based dynamic pose control
is performed at 1–2Hz, but their system is actuated using magnetic
fields. Haggerty et al. [29] also use a magnetically actuated SCA to
demonstrate a recurrent neural network (RNN)-based dynamic
model to improve upon the real-time prediction of Cosserat rod
theory, but this method tends to preserve the structure of the data
without considering the underlying physics leading to overfitting
and a lack of generalization. Adding a history of previous states,
to better model physical phenomena like hysteresis, could
improve these results. Using motion capture techniques for state
estimation like many previous works [20,22,29–35] is also infeasi-
ble for outdoor scenarios due to the unstructured environment and
potential occlusions. In contrast, our approach employs a magnetic
sensor to track the arm state in real-time offering a more feasible
solution for outdoor applications.
Li et al. [36] use an adaptive Kalman filter to enable an optimal

controller of a two-section pneumatic arm. However, Kalman filter-
based approaches are limited by linear models and Gaussian noise.
A popular approach for modeling continuum arms is Cosserat rod
theory, but it is computationally expensive, requires parameter esti-
mation, and is restricted to simulation studies [37–39]. Finite
element methods [32] have also been studied for dynamic position
control, but struggle with high computational loads slowing
real-time deployment. Several Koopman-operator theory-based
methods [29–31] seek to overcome this limitation by constructing
a linear model in a higher dimensional space, but require large
amounts of data leading to wear on the robot, especially when the
size of state space increases. Compared with these methods, ours
is more sample efficient. Bruder et al. [30] use a similar number
of data points as our method to model and control the projected
position of a vertically suspended manipulator with three actuators.
To extend their work, Bruder et al. [31] control a longer arm with
variable loading, but the number of samples grows by an order of
magnitude. Our method controls the position and orientation of a
manipulator of comparable length to that in Ref. [31] with six actu-
ators with the same magnitude of samples as in Ref. [30]. Our
system additionally has a mobile soft arm base and a hybrid
bending/rotational actuator combination as opposed to purely

Table 1 Comparison of sample efficiency with prior methods

Reference
Data points
sampled Actuation space dimension

Length of the
manipulator Workspace

Soft manipulator base
is stationary

Bruder et al.
[30]

45,103 Three bending actuators 34 cm Controls laser points on
2D grid

Yes

Bruder et al.
[31]

325,733 Three bending actuators 70 cm Controls 3D position
with unknown loads

Yes

Centurelli
et al. [22]

10,000 Three bending actuators 44 cm Controls 3D position Yes

Ours 41,920 Two servo motors, one stepper motor, one
bending actuator, and two rotating actuators

70 cm Controls 3D position and
orientation

No (see θ1 and θ2 in
Fig. 2)

Note: Bruder et al. [30] have a similar number of data points, but a smaller actuation space, shorter manipulator, smaller workspace, and stationary base
making it less sample efficient. Bruder et al. [31] use an order of magnitude more data, but have a smaller actuation space, similar length manipulator,
smaller workspace, and a stationary base making it again less sample efficient. No conclusion about sample efficiency can be drawn when comparing to
Ref. [22] because it uses less data, but has a smaller actuation space, shorter manipulator, smaller workspace, and stationary manipulator.
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bending actuators. Thus, our method finds a mapping between more
complex actuation and task spaces and is more sample efficient. A
comparable method on a smaller workspace and an actuation space
can be seen in Ref. [22]. These comparisons are summarized in
Table 1. Sample efficient models combined with RL have been
explored [1,21,22,26,27]. Methods for overcoming the
simulation-to-reality gap in RL have also been explored [40–42].
Although these methods are very precise, they require a new
policy for each learned trajectory, limiting the scalability of their
application. Toward overcoming model degradation issues in
order to adapt as the system wears, Piqué et al. [43] explore contin-
ual learning methods in the soft robot control field under continu-
ously changing loads. However, these approaches involve
trade-offs, particularly between avoiding catastrophic forgetting
and managing computational and memory overheads.
Many works [31,44–49] use a model predictive control (MPC)

framework for the dynamic control of soft systems but have
several limitations. Approaches that model the system as linear
[45,46,49] offer real-time control but fail to capture the complex
nonlinearities. Preiss et al. [44] incorporate nonlinearities using an
RNN-based model followed by an extended Kalman filter into the
optimization framework but it is limited by the filter’s assumptions
of noise and modeling. Tang et al. [48] model the dynamics using
the Gaussian process, incorporating uncertainty estimation and
propagation, but can be limited computationally as the training
data increase. Within the same MPC framework, Jensen et al.
[47] explore using a genetic evolutionary optimization framework
with integral control but can be slow due to the number of iterations
to converge particularly as the number of states increases.
In this work, we present a closed-loop controller that controls

both the position and line-of-sight orientation of a hybrid rigid-soft
continuum manipulator’s end effector aimed at real-time deploy-
ment in applications where low computational power is available
and medium to high operating speeds are necessary. Similar to
Ref. [20], the forward model is first learned from dynamic data
to model our hybrid arm. Zero-velocity tip data are incorporated

to enable static reaching and to better support downstream manipu-
lation tasks. Second, the forward model is used to generate optimal
trajectories offline to serve as expert data. Third, the generated tra-
jectories are run on the physical robot to avoid the
simulation-to-reality gap, and a control policy is learned offline
that can be leveraged in a real-time closed-loop controller as
shown in Fig. 1. This policy is evaluated and analyzed on the phys-
ical platform showing a single control policy reaching arbitrary
poses in the workspace, being robust to external loads, following
trajectories, and operating at different control frequencies. Note
that soft arms in previous works are vertically suspended with a
fixed orientation of the base and solely have bending actuations
[20–22,26–31,33,36,40]. In contrast, our system varies the orienta-
tion of the soft arm base, the soft arm varies in length, and a tor-
sional actuator is considered. As a result, the workspace is not
completely symmetric and the effect of gravity is quite severe on
the soft portion presenting an additional challenge. Because of the
little compute needed at inference time, this policy is ideal in set-
tings like agricultural environments where computing power is
limited.

3 Proposed Approach
3.1 Robotic Platform. The robotic platform used is an extrud-

able BR2 SCA nested within a 3D-printed rigid arm, also called the
VaLeNS arm [18] where the rigid portion can rotate in two
degrees-of-freedom as seen in Fig. 2(d ). Custom camera and
gripper combinations can be mounted on the end of this hybrid
arm to support various manipulation tasks. To measure the end
effector pose, a Polhemus Patriot Motion Tracker3 is used. It con-
sists of a pea-sized magnetic sensor mounted at the end effector
whose pose is measured relative to a magnetic source placed at
the base of the arm as seen in Fig. 2(a). The soft arm is made
from a combination of one bending and two rotational fiber-
reinforced elastomeric enclosures [14,50], hence the name BR2 [18].
These are pneumatically pressurized tubes wrapped with an inex-
tensible fiber woven in a helical shape. The angle of the wrapping,
the material of the fiber, and the number of fibers affect the behavior
of the BR2 when pressurized [14]. The stepper motor extrudes the
soft arm by length, L, using a lead screw enclosed within the
rigid arm. The rigid arm can adjust its pitch θ1 and roll θ2.
Each actuation (Fig. 2(d )) is limited to a set range to support a

sufficiently large workspace while ensuring operational safety.
The pitch, θ1, is limited to [−45 deg, 45 deg] with 0 being the
level with the ground. The roll, θ2, is limited to [−90 deg, 90 deg]
with 0 being the home position. The extrusion, L, is limited to
[10, 16] cm. The bending pressure, B, is limited to [48.26,
241.32] kPa, and the rotating pressures, R1 and R2, are limited to
[0, 241.32] kPa. Both rotational actuators are pressurized to a
base pressure of 241.32 kPa and then differentially pressurized to
rotate in the desired direction. The differential pressurization
serves to minimize oscillations, thereby enhancing the system’s
load-bearing ability. A single actuation variable can be used to
control the pressures in both R1 and R2 with differential actuation.

3.2 Control Algorithm. This section elaborates on Fig. 3,
which describes a pipeline for developing a fast, real-time position
and orientation controller. Controlling the orientation is especially
important for vision-based tasks where target objects must be in
the view of a tip camera as seen in Fig. 4. Therefore, the line of
sight vector tangent with respect to the arm length, as shown in
Fig. 2(b), was selected to represent the arm’s orientation. This
decreases the number of parameters to control and allows
freedom of rotation axially along the soft arm as long as the line
of sight is maintained. The control policy is developed in three
steps offline. First, data are collected on the robot and a forward
dynamic model, f , is learned (see Fig. 3(a)). Next, optimal

Fig. 1 We developed a non-quasistatic pose controller for a
hybrid continuum arm. Our approach enables quick and accu-
rate pose control anywhere in the workspace. The manipulator’s
inherent dexterity and adaptability make it promising for practi-
cal applications [1,2]. This figure shows a sample evaluation of
our controller where it reaches the desired pose within 12.5s at
a control frequency of 4Hz. 3https://polhemus.com/motion-tracking/all-trackers/patriot/
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trajectories are generated using the forward model (see Fig. 3(b)).
Finally, a control policy, g, is learned from the generated optimal
trajectories (see Fig. 3(c)). Here, f and g are neural network-based.
We also verify that the LMU-based model outperforms other archi-
tectures (see Tables 2 and 3).
In this article, the following notations are used. State at time t,

s(t), consists of position, p(t), and line of sight orientation,
r(t). The line of sight is the x-axis of the sensor’s frame
(Fig. 2(b)). Actuation is u = [θ1, θ2, L, B, R1, R2] whereas change
in actuation is Δu = [Δθ1, Δθ2, ΔL, ΔB, ΔR]. D is the size of the
dataset under discussion. The subscript gt will designate the
ground truth label. Forward Model. The forward model data are
collected on the robot by first setting the bounds on actuations
(θ1, θ2, L, B, R1, R2) as explained in Sec. 4.1. The bounds on

changes in actuations (Δθ1, Δθ2, ΔL, ΔB, ΔR) are also set so that
the system has sufficient time to respond to the control signals.
The changes in the rigid arm joint angles, Δθ1 and Δθ2, were
bound between [−5 deg, + 5 deg] and [−10 deg, +10 deg], respec-
tively. The changes in the pressures, ΔB and ΔR, were bound
between [−20.68, 20.68] kPa, and changes in the extrusion, ΔL,
between [0, 0.7] cm. After random control inputs are actuated for
a predetermined time of 5 s, the actuations are held constant for 3
s to let the system settle as the oscillations dampen and data are col-
lected throughout 8 s at 4Hz. When operating faster than 4Hz, the
set range of actuation changes for the stepper motor would result in
high speeds that risk damaging the magnetic sensor cable that goes
along the length of the soft arm. This being the most expensive part
of the system, a 4Hz operating frequency was selected due to the

Fig. 3 Pipeline for obtaining and deploying control policy of the hybrid arm. (a) Step one trains the neural-network-based
forward model f using data collected on the robot where inputs are poses, actuations, and changes in actuations at current
and previous time-steps and the output is the pose at the next time-step. (b) Step two generates optimal trajectories where
the trained forward model f is used iteratively to obtain optimal actuations and optimal changes in actuation in reaching a
given initial pose, initial actuation, and goal pose. (c) Step three runs generated trajectories on the robot and trains a
control policy g that learns optimal changes in actuation. (d) Finally, the learned offline policy g is deployed on the robot iter-
atively at m control frequency to reach a goal pose given current and previous poses and actuations.

Fig. 2 (a) Overall hybrid manipulator system. Themagnetic sensor measures the pose of the end effector relative to the magnetic
source. (b) The controller enables control of the end effector’s position and line of sight orientation. (c) A small load (3.8 g, 10% of
the SCA’s weight) and a large load (10.8g, 30% of the SCA’s weight) are added at the tip to test the controller’s robustness.
(d) Each individual actuation of the hybrid arm relative to the home position is shown.
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limitation of the extrusion component. In total, 9600 training
samples were collected in this manner, and the training and
testing data were split in a 0.8–0.2 ratio randomly.
The history of inputs must be considered when modeling the

forward model due to hysteresis in the system, a phenomenon in
soft robotics that typically occurs in dynamic regimes [17]. A
system has hysteresis if the behavior of a system depends on the
input and the history of previous states. Given that our approach
involves using both current and past states as inputs to the
forward model and control policy neural networks, RNN-based
architectures [51] are better suited for capturing these temporal
dependencies compared to MLPs (Multilayer Perceptrons) [52],
which lack temporal memory. RNNs [51] are one of the earliest
architectures that deal with such time-dependent problems.
However, they struggle to capture long-term dependencies and

suffer from issues like vanishing and exploding gradients during
training. To address these limitations, more advanced architectures
such as long short term memory (LSTM) [53] and LMUs (Legendre
Memory Units) [54] have been introduced, which are capable of
capturing long-term dependencies. With the data collected, MLP,
RNN, LSTM, and LMU-based architectures were trained and
tested to evaluate their effectiveness in capturing temporal relations.
As shown in Fig. 3(a), the inputs to the network are the poses,

s(t), s(t − 1), actuations, u(t), u(t − 1), and changes in actuations,
Δu(t), Δu(t − 1) at current time-step, t, and previous time-step,
t − 1, respectively. The output of the forward model is the pose at
the next time-step, s(t + 1). Hyperparameters of these models
include memory size, batch size, learning rate, number of layers,
hidden layer size, and window length. The overall function of the
forward models is represented mathematically in Eq. (1).

s(t + 1) = f (s(t), u(t), Δu(t), s(t − 1), u(t − 1), Δu(t − 1)) (1)

1
‖D‖

∑D
i=1

‖ p̂i − pigt‖2 −
1

‖D‖
∑D
i=1

(r̂i · rigt)
(‖r̂i‖‖rigt‖)

(2)

The loss function for learning the forward model is composed of
the mean square error for learning position p = (x, y, z) and cosine
similarity for learning orientation, r, which is shown in Eq. (2).
Here, p̂i and r̂i denote the (x, y, z) and line of sight orientation
prediction from the forward model of ith data in D, whereas, pigt
and rigt denote the corresponding ground truth. Ideally, the first
term goes to 0 while the second term goes to 1.

min
u(1),...,u(n),Δu(0),...,Δu(n)

α‖pgoal − p(n)‖2 + λ
∑n−1
t=0

‖pgoal − p(t)‖2 + β 1 −
rgoal · r(n)

‖rgoal‖‖r(n)‖
( )2

+γ
∑n
t=0

‖Δu(t)‖2

where umin ≤ u(t) ≤ umax, Δumin ≤ Δu(t) ≤ Δumax ∀ t ∈ [0, 1, . . . , n]

s(t + 1) = f (s(t), u(t), Δu(t), s(t − 1), u(t − 1), Δu(t − 1)) ∀ t ∈ [1, . . . , n]

s(t + 1) = f (s(t), u(t), Δu(t), s(t), u(t), Δu(t)) if t = 0 (3)

Trajectory Optimization. Once the forward model is trained, an
optimizer is used to find optimal trajectories for a given start
pose, s(0), its corresponding start actuation, u(0), and desired goal
pose, sgoal, in the workspace as shown in Fig. 3(b). These optimal
trajectories serve as expert data that the control policy will use to
learn the inverse kinematics of the system.
To optimize the trajectory, the Adam optimizer [55] was used. To

solve this constrained optimization problem more quickly, a
“warm-start” was used where the solution to the unconstrained opti-
mization was used as the initial guess for the constrained

optimization [56]. A subset of 10 trajectories were tested to
compare optimization with a “cold-start” and “warm-start.” Empir-
ically, using a warm-start optimization increased speeds by about
threefold. With this setting, the Adam optimizer produced more
accurate results in fewer iterations. The objective function is
shown in Eq. (3) where minimization for a given start and goal
states along with the constraints is performed.
α, λ, β, and γ are all manually tuned hyperparameters that weigh

each term in the objective function. The time horizon, n, is another
hyperparameter. The first term in the objective function drives the

Table 2 Forward model test errors on 480 unseen poses

Architecture Position error (cm) ↓ Orientation error (deg) ↓

MLP 1.74 9.46
RNN 1.42 10.91
LSTM 1.14 10.13
LMU 1.13 10.49

Note: The LMU has the best position error while the MLP has the best
orientation error. see Fig. 3(a). Best errors are bolded.

Fig. 4 Bringing the target in view of the tip camera using our policy that controls both position and line-of-sight orientation, as
seen in (a) tip camera view and (b) third-person view, where the start, final, and goal poses are indicated by arrows
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final position toward the desired goal position. The second term
encourages each step of the trajectory to proceed toward the goal
position. The third term drives the final orientation to the desired
goal orientation. The final term encourages minimal actuation
effort across the trajectory. The forward model and the physical
limitations of the system act as the constraints. The sequence of
actuations, u(0), . . . , u(n), and the sequence of change in actuations,
Δu(0), . . . , Δu(n), are the optimization variables. The bounds on the
changes in actuation are the same as in the forward model. This pre-
vents the optimizer from exploiting unexplored regions with larger
actuations at the cost of limiting the system’s ability to dampen
oscillatory behavior. The optimizer was run until convergence,
and if the solution was not within 1 cm and 25 deg of the goal,
then the optimizer was initialized with a different seed. Optimiza-
tion would continue as such until convergence of the tolerance or
until a 1 h time limit was reached. To speed up the generation of tra-
jectories, optimization was done in parallel. To summarize, this
objective function seeks to minimize the end effector’s position
error, orientation error, and minimal actuation effort for reaching

tasks subject to physical constraints.Control Policy Network.
Solving nonlinear optimization may not always lead to conver-
gence, so trajectories with final position errors larger than 10 cm
and orientation errors larger than 36 deg were discarded. About
4% of the 2926 trajectories were discarded and visualized in
Fig. 5. For clarity, only the desired end pose of the trajectories is
plotted. Additionally, the optimizer may have exploited inaccura-
cies in the learned forward model. So, prior to training the control
policy, the generated optimal trajectories are collected on the
hybrid arm to eliminate the simulation-to-reality gap, since directly
training on simulated optimal trajectories resulted in poor perfor-
mance: 15.8 cm position error and 43.56 deg orientation error
when evaluated on 11 test cases of each goal pose each run 5 times.
With the filtered data, various models are trained to learn the

inverse kinematics of the system shown in Eq. (4). As seen in
Fig. 3(c), this policy takes the poses and actuations at current and
previous time-steps along with the goal pose as input. The output
is the next optimal change in actuation to progress toward the
goal pose. More specifically, RNN, LMU, LSTM, and a 5-layer
MLP-based models are trained and compared. To train these poli-
cies, the mean square error between the predicted change in actua-
tions, Δû, and corresponding ground truth, Δugt, is used as the loss
function as shown in Eq. (5). The optimal trajectories provide Δugt
at each time-step to reach toward the goal pose, sgoal. At inference
time, these policies can be used iteratively at an operating control
frequency, mHz, to navigate to a goal position as illustrated in
Fig. 3(d ).

Δu(t) = g(sgoal, s(t), u(t), s(t − 1), u(t − 1)) (4)

1
‖D‖

∑D
i=1

‖Δûi − Δuigt‖2 (5)

4 Experimental Results
This section describes the suite of tests performed to evaluate the

method described in Sec. 3.2. First, the predicted forward model
poses were evaluated with the measured pose data. Then, the perfor-
mance of control policies with different architectures was evaluated
on 11 different random poses in the workspace. These tests are
repeated with loads attached to the end effector as shown in
Fig. 2(c) to test the policy’s robustness. Additionally, line-tracking
tests were evaluated with varying control frequencies.

4.1 Forward Model Evaluation. The forward models are
trained using various architectures and evaluated on 480 unseen
test poses as shown in Table 2. The visualization of the training
and testing data distribution, which includes the entire trajectory
along with the end poses, in the form of relative dexterity
measure is shown in Fig. 6. To understand the visualization, take,
for example, the xyz-grid areas highlighted in yellow which have

Table 3 Comparison of policies with different architectures of our learned control policy with respect to position and orientation
errors over 11 random start-goal pairs each run 5 times

Average final pose error Average best position in x(t) Average best orientation in x(t)

Controller Pos (cm) ↓ Ori (deg) ↓ Pos (cm) ↓ t (s) ↓ Corr Ori (deg) ↓ Ori (deg) ↓ t (s) ↓ Corr Pos (cm) ↓

Ours (MLP) 7.31 25.65 5.18 8.82 22.44 18.37 8.48 6.93
Ours (RNN) 5.44 21.34 3.85 9.01 22.09 16.5 6.97 7.97
Ours (LSTM) 4.18 21.47 3.01 8.06 23.11 15.47 7.42 5.53
Ours (LMU) 3.73 17.78 2.75 9.15 20.52 13.13 8.09 5.92

Ours (LMU)+ 3.8 g 4.33 16.85 3.04 8.97 17.7 12.74 8.92 5.44
Ours (LMU)+ 10.8 g 5.22 18.34 3.61 8.69 16.76 12.74 6.46 7.05

Note: Additionally, the best position and corresponding time and orientation errors are reported. Similarly, the best orientation error and corresponding time
and position error are reported. The LMU-based has the best performance overall. Finally, the LMU control policy performance is evaluated with different
loads on the end effector to show robustness to external loads unseen during training. Best errors are bolded.

Fig. 5 Of all the generated trajectories, 115 trajectories (4%)
were filtered due to poor optimization. A histogram of all their
final convergence errors is presented.
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a 6/8 dexterity measure in the training data distribution. If we draw a
sphere in any of these grid cells, the line-of-sight of our arm-tip can
point in six directions out of the eight possible octants in the sphere.
The evaluation of forward models on test data in Table 2 indicates
the overall learning of dynamics in the workspace with varying dex-
terity due to the random split of training and testing data as men-
tioned in Sec. 3.2. Therefore, the test data which were randomly
withheld during training help evaluate our learned models on
unseen data. Note that the sparsity on the right side of Fig. 6
results from the 20% random sampling of the entire dataset
unseen during training.
To evaluate the learned forward model, for each trajectory, the

mean squared error and and cosine similarity for position and orien-
tation errors are computed over the entire trajectory and averages
are calculated. Then, the combined average error is computed
over the entire test data and reported in Table 2 for different
architectures.
Each architecture was trained for 200 epochs with a batch size of

100 and a learning rate of 5 × 10−4 for a fair comparison. The recur-
rent architectures had a hidden size of 128, and the LMU had a
window length of 2. These settings were found using a manual
hyperparameter search. Looking at the position and orientation

errors together, LSTM and LMU perform better than other
models and the LMU model was selected for the trajectory genera-
tion as its position error was the lowest. A sample trajectory pre-
dicted by the forward model based on LMU is shown in Fig. 7.

4.2 System Stochasticity. To baseline the stochasticity of
the system, 10 random actuations were sent 5 times each to the
system. The range and standard deviation in the measured poses
were averaged across the 10 actuations. The results are shown in
Table 4, which shows the inherent variability in the hardware.

4.3 Control Policy Evaluation. To construct the control poli-
cies, the architectures are trained using 2926 optimal trajectories.
Each architecture was trained for 1000 epochs with a batch size of
64 and a learning rate of 1 × 10−4. The recurrent architectures had
a hidden size of 256, and θ was 700 for the LMU. These settings
were found manually using a hyperparameter search. A suite of
tests is run to evaluate these policies. First, policies are evaluated
on 11 different random start-goal pairs each tested 5 times. The
LMU is found to have the best performance and is further evaluated
by adding external load, tracking trajectories, and determining
control frequency robustness. Reaching Arbitrary Pose. Control pol-
icies trained using various architectures are evaluated on 11 random
poses. A summary of the results is given in Table 3. The control
policy was run at 4Hz with a time horizon of 12.5 s. The steady-state
position and orientation errors are reported in the first two columns of
Table 3. The best position errors, corresponding orientation errors,
and their respective times are also provided, as are the best orientation
errors, corresponding position errors, and their corresponding
times. For each start-goal pair, five tests were run to capture the var-
iance. These results baseline the system. In our previous works

Fig. 6 Three-dimensional visualization of training and testing data in the workspace. Each grid cell is shaded based on
the number of octants covered by the orientation vectors at that cell.

Fig. 7 Three-dimensional visualization of the LMU’s predicted
position of the end effector versus its measured position over
time where the forward model predicts the next state based on
current and previous states, and control inputs at each time-step

Table 4 Variability of the pose given an arbitrary actuation

Actuation Position (cm) ↓ Orientation (deg) ↓

θ1 0.63± 0.66 3.74± 3.94
θ2 0.74± 0.78 4.44± 1.94
L 1.09± 1.23 5.76± 4.85
B 1.66± 1.80 9.87± 9.03
R 0.42± 0.45 2.20± 1.47

Note: Bending has the highest variance in both position and orientation
compared to other actuations.
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[26,57], quasistatic methods obtained results of 1–2 cm errors in the
order of minutes. Our approach sacrifices a small degree of positional
accuracy in exchange for significant improvements in control speed
and the ability to effectively control end effector orientation. On
average, the poses are reached with 3.73 cm and 17.78 deg error,
which is 1.13× the SCA diameter (3.30 cm).
We further evaluate two test cases where the goal pose of a berry-

like target is provided such that it is visible from the camera
mounted at the tip of the arm. Our control policy is able to make
the targets appear in view of the tip camera as seen in Fig. 4,
using which image-based control methods like visual servoing
can be explored in the future to close the gap. Baseline Comparison.
To validate the performance of our proposed approach, we perform
several baseline tests. First, we evaluate using random trajectories
of the forward model data to directly train the control policy. The
results in Table 5 show that the policy trained on the forward
model random data has less generalization compared to the policy
trained on optimal trajectories. But by leveraging the forward
model, generating optimal trajectories helps explore the workspace
more efficiently resulting in a better policy.
Second, we have shown that the forward model data collected in

a dynamic manner account for dynamic effects by running our pipe-
line shown in Fig. 3 but learned on quasistatic data and then testing
in a dynamic regime. If no dynamic effects were learned by the
policy, then this method would have similar results to a policy
trained on dynamic data. However, the results from Table 5 show
that the policy trained on data collected in a quasistatic manner
does not perform at non-quasistatic operating frequencies. On the
other hand, the performance of policy learned on dynamic data
does not deviate significantly with increasing operating frequency
as shown in the control frequency robustness test in Sec. 4.3.
This shows that our policy learns how to control the system to
achieve the desired poses quickly although oscillations are not
dampened.
Third baseline comparison is done with an MPC [58] and a model

predictive path integral (MPPI) controller [59] using the learned
LMU forward model. Our findings are summarized as follows:

(i) Since MPC operates in real-time, it requires conducting the
same nonlinear optimizations as described in Eq. (3) at every time-
step. To enable the 4Hz operating frequency on a laptop with 16
CPUs running at 2.3GHz and a GeForce RTX 3060 Mobile Graph-
ics card running at 1.4GHz, we chose a time horizon, n, of 2 and a
maximum of 20 iterations for optimization. Because of the noncon-
vexity of the optimization as well as the limited computation time,
the MPC has poor real-time performance as seen in Table 3, though
recent studies have explored methods to improve its real-time effi-
ciency [60–62].
(ii) The MPC controller was also implemented in simulation to

evaluate its accuracy in a dynamic regime given more compute
time. With a time horizon of 20 steps and max iterations of 100 k
for optimization, a single trajectory required about 3 h of computa-
tion time to reach position accuracy of 1.1 cm and orientation
accuracy of 5 deg with 33 actuations applied in a closed-loop
fashion. Simulation offers superior accuracy, but computation
time and simulation-to-reality errors limit realizing these accuracies
on the physical system at the operating frequency of 4Hz.
(iii) Two MPPI controllers with different weights are also tested

as baselines. Each computes 10,000 rollouts each with a time
horizon of 15 steps in parallel. MPPI (1) uses the same optimization
objective (Eq. (3)), and MPPI (2) weights the position error
4× more. The next actuation is then computed as a weighted
average as shown in Eq. (6) where Sk is the objective function
value of rollout k.

Δu(t + 1) =
∑K

k=0 wkuk∑K
k=0 wk

, wk = e−(Sk/λ) (6)

While their performance is better than MPC, they could not
achieve lower position and orientation errors compared to our
learned controller because our method learns this difficult noncon-
vex optimization offline.
Our learned controller outperforms these baselines mainly due to

the lack of simulation-to-reality error. The baselines are optimized
over a learned forward model, where low data regimes may be

Table 5 Baseline comparisons

Controller Dataset
Control

frequency (Hz)
Average final

position error (cm)
Average final

orientation error (deg)
Average ITAE

position (min cm)
Average ITAE

orientation (min deg)

Learned
(LMU)

Random
Dynamic

4 18.74 54.28 19.68 58.37

Learned
(LMU)

Optimal
Quasistatic

0.25 6.48 26.34 7.56 28.00

Learned
(LMU)

Optimal
Quasistatic

4 9.49 37.13 9.67 43.84

MPC – 4 27.54 62.35 28.28 62.56
MPPI (1) – 4 16.28 17.19 18.16 21.48
MPPI (2) – 4 8.94 23.12 11.26 23.32

Learned
(LMU)

Optimal
Dynamic

4 3.73 17.78 6.05 28.57

Note: (Top row) Learned policy trained on random trajectories of forward model data, (rows 2 and 3) learned policies trained on optimal trajectories in
quasistatic settings tested at quasistatic and dynamic rates, (rows 4, 5, and 6) MPC, MPPI (1), and MPPI (2) where optimization is performed online,
and (bottom row) learned policy on optimal trajectories whose combined position and orientation error is better than the baselines. ITAE: Integral of
Time-weighted Absolute Error, which is a typical metric used to evaluate control systems. Best errors are bolded.

Table 6 Evaluation of position control and position and orientation control of the soft component of our hybrid system, where their
respective policies can take the arm to the desired goal pose within 4–7s

Workspace
Average time to converge

(s)
Convergence percentage

(%)
Average final position error

(cm)
Average final orientation error

(deg)

(L, B, R1, R2) + (x, y, z) 4.4 100 2.29 (tol= 2.5) –
(L, B, R1, R2) + (x, y, z, rx) 4.4 90 2.56 (tol= 3) 0.86 (tol= 0.8)
(L, B, R1, R2) + (x, y, z, rx) 7.6 60 2.19 (tol= 2.5) 0.90 (tol= 0.9)
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exploited that do not translate to the real system. On the contrary,
our proposed approach uses optimal trajectories run on the real
system to train the learned policy and avoid the simulation-to-reality
gap. Scalability. To evaluate the scalability of learning policies with
the number of states, a comparison with two smaller workspaces
involving just the soft components (extrusion, bending, and rota-
tion) is performed. The first workspace involves just position
control and the second one also involves orientation control,
where the pipeline shown in Fig. 3 is implemented with appropriate
state modifications. Table 6 shows the performance of the two pol-
icies. With the full workspace of our system, we require 2926
optimal trajectories to learn a policy that can reach desired poses
with an average position error of 3.73 cm and orientation error of
17.78 deg error within 12.5 s, compared to 1115 trajectories in
both versions of smaller workspace in reaching less than 3 cm posi-
tion and 25–36 deg orientation within 4–7 s.
Robustness to External Load. The policy was evaluated with dif-

ferent loading conditions. A small load of 3.8 g (∼ 10% of the
SCA’s weight) and a large load of 10.8 g (∼ 30% of the SCA’s
weight) were attached to the tip of the arm as seen in Fig. 2(c).
The same 11 trajectories were tested 5 times in these different
loading scenarios to capture the variance of the trajectories. As
seen in Table 3, the loads have minimal effect on the errors achieved
by the policy. Averaging over 55 tests, the final position (column 1)
and orientation error (column 2) degrade slightly, but the loads even
allow the best positions (column 5) and orientations (column 8) to
be achieved more quickly. We attribute this outcome to the damped
oscillations due to the larger end effector load. Errors of a test case
at different load conditions are shown in Fig. 8 showing the robust-
ness of our policy. Control Frequency Robustness. To further eval-
uate the policy’s robustness, multiple control frequencies were also
tested for the line-following trajectory. The line was still segmented
into 10 evenly spaced waypoints, and control frequencies of 1, 2, 4,
and 8Hz were evaluated. Frequencies faster than 8Hz were not
attempted due to hardware limitations. The results (see Table 7)

show that if a pose can be reached within a certain tolerance, it is
reachable with any slower control frequency. For example, if 3
cm and 5 deg can be converged upon at 8Hz, then it can also be
converged at 1Hz. This is an interesting finding because the
control policy was learned with data collected at 4Hz.

5 Conclusion
Developing fast, robust, and accurate soft robotic controllers

remains an open challenge. In this work, the difficulty of this chal-
lenge is increased by tackling orientation as well as position control.
Furthermore, the hybrid soft-rigid system considered in this article
is challenging due to variations in the orientation of the soft manip-
ulator base, varying soft manipulator length, and the torsional pneu-
matic actuator. A dynamic model is first learned and evaluated
using neural networks. Then, optimal trajectories were generated
to serve as expert data for training a control policy. This optimal
control policy was trained and then evaluated on a physical plat-
form. Its capability of reaching arbitrary poses in the workspace,
tracking pose trajectories, and operating at different control fre-
quencies and with unknown loads was analyzed. Arbitrary poses
in the workspace were reached within 3.73 cm and 17.78 deg in
12.5 s. The policy was also robust to operating control frequency
and minimally affected by external loads without further training
or fine-tuning.
While this work demonstrates that accuracy in both position and

orientation can be achieved quickly in a complex 3D workspace,
there are limitations. Without online learning, our method requires
proper data collection to ensure good generalization in all parts of
the workspace for both the forward model and the policy. Similarly,
if the system changes over time due to issues like wear and tear,
online learning must be incorporated to adapt to these changes.
Additionally, the policy’s performance is limited by the quality of
the expert trajectories. Ensuring high-quality nonconvex

Fig. 8 Comparison of trajectory, position error, and orientation error across different loads. The starting positions change due to
different loads, but the position and orientation converge to the desired pose over time.

Table 7 Control frequency and pose tolerance analysis of the line test

Control frequency
(Hz)

Best tolerance with 100%
convergence

Average trajectory time
(s)

Average final position error
(cm)

Average final orientation error
(deg)

1 2 cm, 5 deg 15.0 ± 1.1 1.73 ± 0.24 1.89 ± 0.69
2 3 cm, 5 deg 5.5 ± 0.3 2.50 ± 0.53 1.77 ± 0.88
4 3 cm, 5 deg 2.8 ± 0.1 2.58 ± 0.20 1.55 ± 1.29
8 3 cm, 5 deg 1.6 ± 0.0 2.16 ± 0.44 2.49 ± 0.72

Note: The higher the frequency, the shorter the trajectory times. Lowering the control frequency results in better performance. Errors and standard deviation
are reported for the final position and orientation.
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optimizations is difficult with current methods lacking global con-
vergence guarantees. Despite these limitations, our method is a
step toward fast and accurate dynamic pose control of soft manipu-
lators. With these promising results, future work will seek to outper-
form this baseline. Visual feedback can be incorporated if target
images or objects are provided. More application-focused exten-
sions like obstacle avoidance and controlling a serial soft manipula-
tor configuration can also be explored.
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